### Episode 17

# Describing Motion of Rigid Bodies - Part 2: Applications of Rigid Body Kinematics

**ENGN0040: Dynamics and Vibrations Allan Bower, Yue Qi** 

School of Engineering Brown University

### **Topics for todays class**

#### Applications of rigid body kinematics

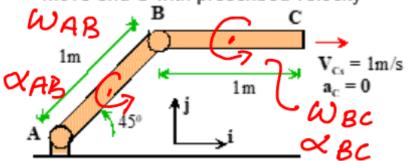
- 1. Analyzing motion in connected systems of rigid bodies
- 2. Gears
- 3. Pulleys
- 4. The rolling wheel



## 62 Analyzing motion in systems of rigid bodies

General Problem Given V, a of two points in system find w, & for each member

Problem: how to rotate joints at A, B to move end C with prescribed velocity

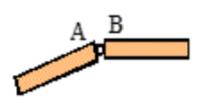


#### Procedure:

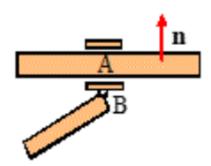
- (1) Introduce unknown was for each rigid body
- (2) Relate velocities of known points (A, C)
  using rigid body formulas and constraint
  equations at joints
- (3) Solve eq.(2) for unknown W
- (4) Repeat (2) for accelerations
- (5) Solve for unknown ≥

## Example Constraints

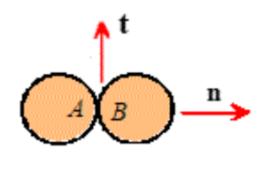
Pin Joint



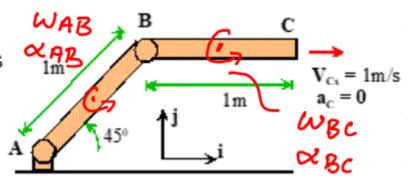
Slider Joint



Contact



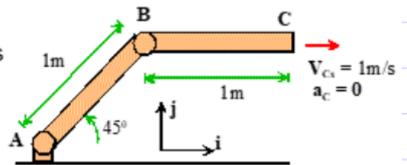
**6.2.1 Example**: Find the angular velocities and accelerations of the two actuators at A and B that will move point C with instantaneous velocity and acceleration  $\mathbf{v}_C = 1m/s$   $\mathbf{a}_C = \mathbf{0}$ 



#### Velocities

$$W_{A} = W_{AB} = -\sqrt{2} \Gamma \alpha d/s$$
  
 $W_{B} = W_{BC} - W_{AB} = (1+\sqrt{2}) \Gamma \alpha d/s$ 

6.2.1 Example: Find the angular velocities and accelerations of the two actuators at A and B that will move point C with instantaneous velocity and acceleration  $\mathbf{v}_C = 1m/s$   $\mathbf{a}_C = \mathbf{0}$ 



#### Accelerations

$$\alpha_{B}-\alpha_{A} = \alpha_{AB}R \times (\Gamma_{B}-\Gamma_{A}) - \omega_{AB}^{2} (\Gamma_{B}-\Gamma_{A}) \qquad \omega_{AB} = -\Gamma_{2}^{2}$$

$$= (\alpha_{AB}/\Gamma_{2}) (-\dot{\nu}+\dot{\phi}) - 2 (\dot{\nu}+\dot{\phi})/\Gamma_{2}^{2}$$

$$= - (\alpha_{AB}+2) \dot{\nu}/\Gamma_{2}^{2} + (\alpha_{AB}-2) \dot{\phi}/\Gamma_{2}^{2}$$

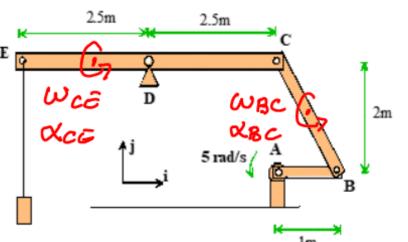
$$\alpha_{c}-\alpha_{B} = \alpha_{Bc}R \times \dot{\nu} - \omega_{Bc}^{2} \dot{\nu} \qquad \omega_{Bc} = 1$$

$$= -\dot{\nu} + \alpha_{Bc}\dot{\phi}$$

#### Add:

$$Q_{c} - Q_{A} = 0 = -(\alpha_{AB}/\sqrt{2} + \sqrt{2} + 1)\dot{\nu} + (\alpha_{AB}/\sqrt{2} + \alpha_{Bc} - \sqrt{2})\dot{+}$$
 $\dot{\nu} = \gamma \quad \alpha_{AB} = -2 - \sqrt{2} \quad rad/s^{2}$ 
 $\dot{\tau} = \gamma \quad \alpha_{BC} = 1 + 2\sqrt{2} \quad rad/s^{2}$ 





Note VA = VD = Q

OIA = OD = D

6.2.2 Example: Link AB rotates counterclockwise with constant angular speed 5 rad/s. Find the velocity and acceleration of point E.

#### Velocities

$$V_B - V_A = W_{AB} k \times (f_B - f_A) = 5 k \times (10) = 5 f$$
  
 $V_C - V_B = W_{BC} k \times (-0.142 f) = -2 w_{BC} i - w_{BC} f$   
 $V_D - V_C = W_{CE} k \times (-2.5 i) = -2.5 w_{CE} f$ 

#### Add:

$$VO-VA=Q=-2WBc\dot{L}+(5-WBc-2.5WcE)\dot{f}$$
  
 $\dot{L}=XWBc=0$   $\dot{L}=XWBc=XWBC$ 

Finally 
$$V_{\varepsilon} - V_{D} = \omega_{c\varepsilon} k \times (-2.5 \text{i}) = -25 \omega_{c\varepsilon} \text{j}$$

$$\Rightarrow V_{\varepsilon} = -5 \text{j} \text{ m/s}$$

Accelerations

Mccelerations

$$Q_B - Q_A = \alpha_{AB}k \times (f_B - f_A) - \omega_{AB}^2 (f_B - f_A) = -25\underline{i}$$
 $Q_C - Q_B = \alpha_{BC}k \times (-\underline{i} + 2\underline{j}) - O^2(-\underline{i} + 2\underline{j}) = -2\alpha_{BC}\underline{i} - \alpha_{BC}\underline{j}$ 
 $Q_D - Q_C = \alpha_{CE}k \times (-2.5\underline{i}) - 4(-2.5\underline{i}) = 10\underline{i} - 2.5\alpha_{CE}\underline{j}$ 
 $Add:$ 
 $Q_D - Q_A = (-25 - 2\alpha_{BC} + 10)\underline{i} - (\alpha_{BC} + 2.5\alpha_{CE})\underline{j}$ 
 $L = \lambda_{BC} = -15/2 \text{ rad/s}^2$ 
 $L = \lambda_{BC} = 3 \text{ rad/s}^2$ 

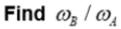
## 6.3 Greass, Pullegs and the Rolling Wheel

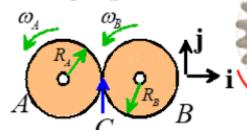
## 6.3.1 Simple Gear Pair

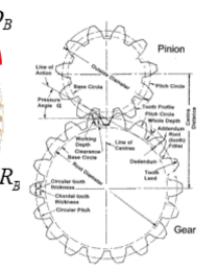
Gears can be viewed as two touching çylindes Velocities of A,B equal at C



- (a) 'Pitch Circle Radii' R<sub>A</sub>, R<sub>B</sub>
- (b) Nos. of teeth  $N_A, N_B$







Rigid body formula

Spacing between teeth equal => 2TIRA = 2TIRB => RA = NA page 10

**6.3.2 Example**: The table lists the numbers of teeth on the seven gear/pinion pairs for the wind turbine transmission shown. Calculate the ratio  $\omega_{Generator} / \omega_{main}$  with Gear 3 connected to the output shaft.

|              | Gearset 1 | Gearset 2 |        |        |        |        |        |
|--------------|-----------|-----------|--------|--------|--------|--------|--------|
|              |           | Gear 1    | Gear 2 | Gear 3 | Gear 4 | Gear 5 | Gear 6 |
| Pinion teeth | 135       | 49        | 53     | 56     | 58     | 59     | 60     |
| Gear teeth   | 50        | 101       | 97     | 94     | 92     | 91     | 90     |



$$\frac{W_S}{W_m} = -\frac{NPI}{NGI}$$
  $\frac{W_G}{W_S} = -\frac{NP2}{NGZ}$ 

NPZ

Gearset 2 with

interchangeable ratios

Pinion

Gear

#### Notes:

- (1) Points on pulley circumference are in circular motion
- (2) Belt mextensible

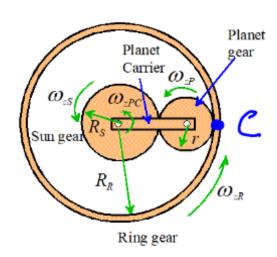
Find  $\omega_{B} / \omega_{A}$ 

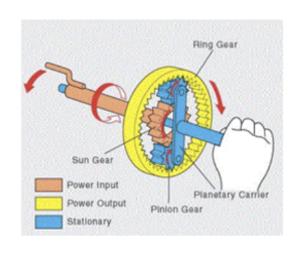
## Epicuclic Gears

#### Simple epicyclic gear problem

The planet carrier is stationary  $\omega_{zPC} = 0$ The sun gear has angular speed  $\omega_{zs}$ Find the angular speeds of the planet  $\omega_{-p}$ and ring gear  $\omega_{zR}$ 

**Given:** Gear radii  $R_{\varsigma}, R_{p}$ No. teeth  $N_{S}$ ,  $N_{R}$ 





Geometry: 
$$R_R = R_S + 2\Gamma \Rightarrow \Gamma = (R_R - R_S)/2$$
  
 $N_P = (N_R - N_S)/2$ 

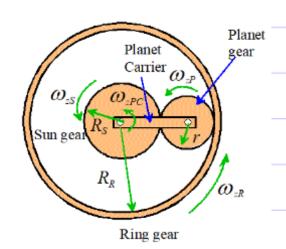
Note sun l'planet are a standard gear pair

Planet & ring have same speed @ C

#### General epicyclic gear problem

The planet carrier has angular speed  $\omega_{zPC}$ The sun gear has angular speed  $\omega_{zS}$ Find the angular speeds of the planet  $\omega_{zP}$  and ring gear  $\omega_{zR}$ 

**Given:** Gear radii  $R_S, R_R$ No. teeth  $N_S, N_R$ 



### Solutim Procedure

Adopt ref frame rotating with planet carrier

subtract Wzec from all angular speeds

Planet cosine stations are use comble from

=> Planet carrier stationary - use simple formulas

$$\frac{W_{2P} - W_{2PC}}{W_{2S} - W_{2PC}} = -\frac{RS}{r} = -\frac{2Rs}{RR - Rs} = \frac{-2Ns}{NR - Ns}$$

$$\frac{\omega_{2R} - \omega_{2PC}}{\omega_{2S} - \omega_{2PC}} = -\frac{Rs}{RR} = -\frac{Ns}{NR}$$

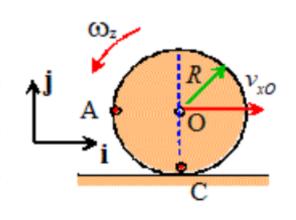
page 14

**6.3.5 Example** The ring gear is stationary and the sun gear rotates counterclockwise with angular speed  $\omega_{zs}$  What is the angular speed of the planet gear?

$$\Rightarrow \omega_P = \omega_S R_S - \omega_S R_S = -\omega_S R_S$$

$$2\Gamma$$

6.3.6 The rolling wheel formulas



Find formulas relating Vo, Co, to Wz, Zz Physics: Point C on wheel is stationary

Rigid body formula: Vo-Ve = Wzkx(Rf)

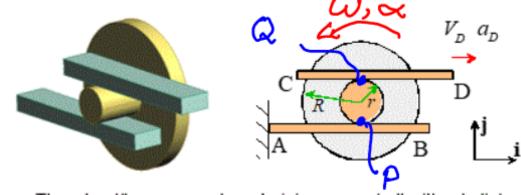
 $= > V_0 = -\omega_2 R \dot{L} \qquad V_{0x} = -\omega_2 R$ 

Differentiate WFE time

no = - ~ Ri

aox=-a2R

**6.3.7 Example** The figure shows a design for an 'inerter'. Point A is stationary and point D moves horizontally with speed  $V_D$ and acceleration  $a_D$ . Find formulas for the angular speed and acceleration of the flywheel.



The wheel/bars are rack-and-pinion gears (roll without slip)

#### Notes :

(1) All points on AB are stationary

(2) All points on CD have vellaccel Voi, and (3) AB & pinion I have same velocity at {P?

CD & pinion }

$$\alpha = -\alpha_D /(2r)$$